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On the complexity of Archimedean solids
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Department of Mathematics, The University of Split, Teslina 12, HR-21000 Split, Croatia

Received 25 November 2004; revised 14 December 2004

The complexity of 13 Archimedean solids via their Schlegel graphs was studied by
four indices: the complexity index based on the augmented vertex-degree, and the total
numbers of walks, trails and paths. All four descriptors consider the truncated tetrahe-
dron, the truncated cube and the truncated octahedron as the least complex structures,
and the rhombicuboctahedron, the icosidodecahedron, the rhombicosidodecahedron,
the snub cuboctahedron and the snub icosidodecahedron the most complex structures
among the 13 Archimedean solids. The ordering of remaining five Archimedean solids
(the truncated icosahedron, the truncated dodecahedron, the cuboctahedron, the trun-
cated cuboctahedron and the truncated icosidodecahedron) differs from index to index.
The visualization of the complexity relationship between Archimedean solids is realized
by the partial order of their indices in consonance with the Hasse diagram.
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1. Introduction

Archimedean solids [1] (also known as Archimedean bodies [2] and Archi-
medean polyhedra [3]) came into the focus of research interest after the discov-
ery of buckminsterfullerene, a pure carbon molecule consisting of 60 atoms [4]
and assignment of its structure as that of the truncated icosahedron. As far as
we know buckminsterfullerene is only real molecule whose structure resembles
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to an Archimedean solid. However, it is expected that other cage molecules will
be prepared possessing structures that can be modeled by Archimedean solids.
We should like to use the term Archimedean molecules for molecules with struc-
tures resembling Archimedean solids. At present, all Archimedean molecules, but
buckminsterfullerene, are virtual molecules. Nevertheless, they are occasionally
studied usually in conjunction with Platonic solids and other polyhedra [5,6]. It
is anticipated that the preparation of Archimedean molecules will be difficult –
these molecules are expected to be rather complex systems, but the imagination
of chemists is so fertile that sooner or later they will be made or discovered.
There is some work already reported in this direction [e.g., 7]. Due to the possi-
ble preparation of Archimedean molecules, it is of interest to consider the com-
plexity of Archimedean solids.

2. Archimedean solids

Archimedean solids are semiregular convex polyhedra [8]. A semiregular
polyhedron is a polyhedron whose faces are regular polygons, although not all
the same, and each of whose vertices is symmetrically equivalent to every other
vertex. There are 13 Archimedean solids – their names and shapes are given in
figure 1. It should be noted that Archimedean solids can be generated by trun-
cating or snubbing regular polyhedra named Platonic solids.

Graphs representing the Archimedean solids are known as of Schlegel
graphs [8]. They are given in figure 2. Schlegel graphs of Archimedean sol-
ids (Archimedean graphs) are planar, regular, polyhedral, Hamiltonian and ver-
tex-transitive graphs. Only six of Archimedean graphs (cubooctahedral graph,
icosahedral graph, snub cubooctahedral graph, snub icosidodecahedral graph,
rhombicuboctahedral graph and rhombicosidodecahedral graph) are the edge-
transitive graphs. Note, a graph is a planar graph if it can be embedded in the
plane. A graph is a regular graph if all of its vertices have the same degree. A
graph is a polyhedral graph if each of its faces is bounded by a polygon. A graph
is a Hamiltonian graph if possesses a spanning cycle. A graph is a vertex-transi-
tive if all of its vertices are symmetrically equivalent. A graph is an edge-tran-
sitive if all of its edges are symmetrically equivalent. All these graph-theoretical
terms are explained and illustrated in Harary′s book Graph Theory [9] and in the
book by one us (NT) Chemical Graph Theory [10].

The first surviving description of Archimedean solids is that of a Greek
geometer Pappus of Alexandria who lived during the fourth century (around
320) [11,12]. Pappus of Alexandria attributes the invention of truncated and
snubbed Platonic solids to Archimedes (287–212 B.C.). Hence, the name Archi-
medean solids. The painter–mathematicians of the Renaissance were interested in
the Golden Cut and in its appearance in the Platonic solids and Archimedean
solids [13]. In 1492, the Archimedean solids were rediscovered by the painter
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Figure 1. The shapes of Archimedean solids.
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Figure 2. The Schlegel graphs of Archimedean solids.
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and mathematician Piero della Francesca [14]. Luca Pacioli in his masterpiece
De Divina Proportione (1509, reproduced in 1956) examined besides the Platonic
solids some of the Archimedean solids, in particular the cubooctahedron. But the
Renaissance author who was perhaps most interested in the Archimedean solids
was Daniel Barbaro, as can be seen in his book Prattica de la Perspectiva (1569). It
was, however, Johannes Keppler (1571–1630) who catalogued the 13 Archimedean
solids in 1619 and gave them their now generally accepted names [15].

The surface of Archimedean solids (or of any polyhedron) in 3D space is
made up of 0-, 1- and 2-dimensional faces. The formula that relates the number
of faces F , the number of edges E and the number of vertices V of polyhedra,
called the Euler formula [e.g., 16] after its inventor [17], is given by:

F − E + V = 2. (1)

This beautifully simple formula is the first formula of topology. Another
simple topological formula relates the number of edges to the number of n-sided
faces Fn of polyhedra:

2E =
∑

n

nFn. (2)

The smallest face is the triangular face F3. Since no face can have fewer
edges than 3, the following inequality must hold in all cases:

2E � 3F. (3)

There is also a formula that relates the number of vertices of a degree d,
Vd, to the number of edges E in a polyhedron:

2E =
∑

d

dVd. (4)

Since no vertex of a polyhedron can have a degree less than 3, the following
inequality must hold in all cases:

2E � 3V. (5)

The topological parameters F, E, V, d and the cycle-rank (or the cyclomatic
number) of Archimedean solids are given in table 1. The cycle-rank of a polycy-
clic graph G, denoted by γ , is equal to the minimum number of edges necessary
to be removed from G to convert it to a spanning tree [18]. It can be computed
as follows:

γ = E − V + 1. (6)

Note, the cycle-rank of a tree is zero and of a monocyclic graph is one.
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Table 1
Topological parameters of the Archimedean solids.

Archimedean solid Regular polygon V E F d γ

Truncated tetrahedron (A) Triangle 12 18 4 3 7
Hexagon 4

Truncated cube (B) Triangle 24 36 8 3 13
Octagon 6

Truncated octahedron (C) Square 24 36 6 3 13
Hexagon 8

Truncated icosahedron (D) Pentagon 60 90 12 3 31
Hexagon 20

Truncated dodecahedron (E) Triangle 60 90 20 3 31
Decagon 12

Cuboctahedron (F) Triangle 12 24 8 4 13
Square 6

Truncated cuboctahedron (G) Square 48 72 12 3 25
Hexagon 8
Octagon 6

Snub cuboctahedron (H) Triangle 24 60 32 5 37
Square 6

Rhombicuboctahedron (I) Triangle 24 48 8 4 25
Square 18

Icosidodecahedron (J) Triangle 30 60 20 4 31
Pentagon 12

Truncated icosidodecahedron (K) Square 120 180 30 3 61
Hexagon 20
Decagon 12

Snub icosidodecahedron (L) Triangle 60 150 80 5 91
Pentagon 12

Rhombicosidodecahedron (M) Triangle 60 120 20 4 61
Square 30
Pentagon 12

3. Complexity indices of Archimedean solids

We used four indices to assess the complexity of Archimedean solids: the
index based on the concept of the augmented vertex-degree, and three indices
based on the total numbers of walks, paths and trails. Indices based on the con-
cept of the augmented vertex-degree and on the number of walks are currently
used in the literature to study the complexity of molecules via their graphs [19–
23] whilst the numbers of and paths trails to our knowledge have not been pre-
viously used for this purpose.
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3.1. Augmented vertex-degree as a measure of complexity

The complexity index ξ , based on the concept of the augmented vertex-
degree, was introduced recently by Randić et al. [24–27] and reviewed by several
groups [20,23,28]. This concept is based on the notion of partial additivity of
vertex-degrees. The degree of a vertex in a graph is the number of edges incident
with this vertex. The augmented degree of a given vertex i, (AVD)i , is obtained
by adding to its degree, the degrees of vertices with the weight that depends on
their distances from this vertex. This can be formalized as:

(AVD)i =
λmax∑

i=1

di/2λ(ij), (7)

where di is the degree of the vertex i, λ(ij) is the shortest distance in terms of
the number of edges between vertices i and j , and λmax is the value of the max-
imal shortest distance. The complexity index is then given as the sum of the aug-
mented degrees of all vertices in a graph not equivalent by symmetry:

ξ =
V∑

i=1

λmax∑

j=1

di/2λ(ij). (8)

In the case of vertex-transitive graphs such as Schlegel graphs representing
Archimeaden solids, equation. (8) reduces to equation. (7), that is:

ξ =
∑

i

(AVD)i . (9)

The greater values of ξ , the greater complexity of an Archimeden solid. The
values of ξ are given in table 2.

3.2. The numbers walks, paths and trails as complexity indices

A walk in a grah is an alternating sequence of vertices and edges, such that
each edge is both, immediately preceded and followed by vertices. A walk is a
trail if all the edges are distinct and a path if all vertices are distinct. The length
of the walk (trail, path) is the number of edges in it. The total walk count was
used, for example, by Rücker and Rücker [29] and by us [30] as a measure of
the complexity of graphs and molecules.

3.2.1. The number of walks in the graph
Since all the observed graphs are regular graphs, the number of walks of

length q, w(q), in these graphs is equal to V dq . Note that the first vertex can be
chosen in V ways and each its successor in the walk in d ways. We computed
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Table 2
Complexity indices based on the augmented vertex-degree, ξ , and the total walk count, twc(q), the

total path count, tpc(q), and the total trail count, ttc(q), of the Archimedean solids.

Archimedean solid ξ twc(q) tpc(q) ttc(q)

A 12.00 118092 1746 2850
B 14.16 236184 4788 6108
C 14.77 236184 6516 7788
D 18.498 590460 19650 21390
E 15.90 590460 12090 15270
F 18.500 1048572 18012 49620
G 16.61 472368 13752 15816
H 32.81 11718744 506052 984828
I 23.13 2097144 78408 121176
J 26.00 2621430 97350 147630
K 17.70 1180920 34500 39540
L 41.43 29296860 1460130 2524830
M 30.52 5242860 225120 315600

The numbers twc(q), ttc(q) and ttc(q) are given for q = 8.

the total walk count, twc(q), by summing up all walks up to the certain length
q, w(q):

twc(q) =
∑

q

w(q). (10)

In our case, we computed tpc(q) up to q = 8. These numbers for Archimedean
graphs are given in table 2.

3.2.2. The number of paths in the vertex-transitive graphs
The number of the paths in the vertex-transitive graph is calculated by the

recursive algorithm. We present this algorithm in the pseudocode. We need the
following variables:

• Visited – we assume that vertex is visited if the path passes through this
vertex. At the beginning of the algorithm, we assume that all entries of this
array are equal to false

• NumOfPaths – this is the array such that its i-th entry contains the num-
ber of paths of length i (at the end of algorithm). Of course, we assume
that all its entries are equal to 0 to start.

• b − V d array such that b[i][1], b[i][2], . . ., b[i][d] are the neighbors of the
vertex i (this is the input of the algorithm).

• length – represents the length of the observed path

• last – last represents the last vertex of the observed path
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• NumVertices – number of vertices of the observed graph

Below we give the pseudocode of the recursive algorithm which enumerates
all paths of length at most MaxLength:

RecEnumeratePaths(length,last)

1) NumOf Pathslength] = NumOf Paths[length] + 1

2) If x < MaxLength

2.1) For i = 1, . . . ,deg

2.1.1) If Visited [b[last ][i]] = False

2.1.1.1) Visited [b[last ][i]] = T rue

2.1.1.2) RecEnumeratePaths (length + 1, b [last ] [i])

2.1.1.3) Visited [b [last ] [i]] = False

MainEnumeratePaths ( )

1) RecEnumeratePaths(0, 1)

2) For i = 1, ..., MaxLength

2.1) NumOf Paths [length] = NumOf Paths [length] · NumV ertices/2

The total path count, tpc(q), is obtained by summing up all paths up to the
certain length q, p(q):

tpc(q) =
∑

p

p(q). (11)

In our case, we computed tpc(q) up to q = 8. The tpc(q) numbers for Ar-
chimedean graphs are given in table 2.

3.2.3. The number of trails in the vertex-transitive graphs
The number of the trails in the vertex-transitive graph is also calculated by

the recursive algorithm. We present this algorithm in the pseudocode. The fol-
lowing variables are nedeed:

• NumOfPaths – this is the array such that its i-th entry contains the num-
ber of paths of length i (at the end of algorithm). Of course, we assume
that all its entries are equal to 0 to start.

• b − V d array such that b[i][1], b[i][2], . . ., b[i][d] are the neighbors of the
vertex i (this is the input of the algorithm).

• Visited – V d array such that V isited [i] [j ] is true only if the edge connect-
ing vertices i and b [i] [j ] is contained in the observed trail.



128 S.M. Rajtmajer et al. / On the complexity of Archimedean solids

• length – represents the length of the observed path

• last – last represents the last vertex of the observed path

• NumVertices – number of vertices of the observed graph

Below is given the pseudocode of the recursive algorithm which enumerates
all paths of length at most MaxLength:

RecEnumerateTrails (length,last)

1) NumOf T rails[length] = NumOf T rails[length] + 1

2) If x < MaxLength

2.1) For i = 1, . . . ,deg

2.1.1) If V isited[last ][i] = False

2.1.1.1) V isited[last ][i] = T rue

2.1.1.2) For j such that b [b [last ] [i]] [j ] = last put V isited [b [last ] [i]] [j ] =
T rue

2.1.1.3) RecEnumeratePaths (length + 1, b [last ] [i])

2.1.1.4) V isited [last ] [i] = False

2.1.1.5) For j such that b [b [last ] [i]] [j ] = last put V isited [b [last ] [i]] [j ] =
False

MainEnumeratePaths ( )

1) RecEnumerateT rails (0, 1)

2) For i = 1, ..., MaxLength

2.1) NumOf T rails [length] = NumOf T rails [length] · NumV ertices/2

The total trail count, ttc(q), is obtained by summing up all trails up to the
certain length q, t (q):

ttc(q) =
∑

q

t (q). (12)

In our case, we computed ttc(q) up to q = 8. The ttc(q) numbers for Archime-
dean graphs are given in table 2.

4. Complexity ordering of Archimedean solids

In table 3 is given the complexity ordering, based on the four descriptors
from table 2, from the least to the most complex Archimedean solid.
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Table 3
Ordering of the Archimedean solids by the four complexity indices from Table 2.

Complexity index Complexity ordering from the least to the most complex Archimedean solid

ξ A < B < C < E < G < K < D < F < I < J < M < H < L
twc(q = 8) A < B = C < G < D = E < F < K < I < J < M < H < L
tpc(q = 8) A < B < C < E < G < F < D < K < I < J < M < H < L
ttc(q = 8) A < B < C < E < G < D < K < F < I < J < M < H < L

All four descriptors consider the truncated tetrahedron (A), the truncated
cube (B) and the truncated octahedron as the least complex structures, and
the rhombicuboctahedron (I), the icosidodecahedron (J), the rhombicosido-
decahedron (M), the snub cuboctahedron (H) and the snub icosidodecahedron
(L) the most complex structures among the Archimedean solids. The order-
ing of D, E, F, G and K differs from index to index. However, three indi-
ces: ξ , tpc(q) and ttc(q) placed the truncated dodecahedron (E) and the trun-
cated cuboctahedron (G) immediately after structures A, B and C. The above
can be visualized by the Hasse diagram based on the partial order of the
four complexity indices (see figure 3). It should be noted that some authors
consider the complexity as a partially-ordered quantity [31–35]. The Hasse
diagram reflecting the partial order of indices appears to be a very useful
device to be used for appraising the structural complexity of molecules and
graphs.

The diagram in figure 3 is such that in following downward along a path
from structure X to structure Y, all four indices have a smaller value for X than
for Y. Furthermore, two structures X and Y are directly linked by an edge down-
ward from X to Y if and only if no third structure is placed by this partial order-
ing between X and Y.

5. Conclusions

The complexity of Archimedean solids was investigated by four complex-
ity indices: the index based on the concept of the augmented vertex-degree, and
three indices based on the total numbers of walks, paths and trails. These indices
agreed in predicting the truncated tetrahedron, the truncated cube and the trun-
cated octahedron as the least complex structures, and the rhombicuboctahedron,
the icosidodecahedron, the rhombicosidodecahedron, the snub cuboctahedron
and the snub icosidodecahedron as the most complex structures among the Ar-
chimedean solids. This is graphically shown by the Hasse diagram representing
the partial order for 13 Archimedean solids based on the four complexity indices
(ξ , twc, tpc, ttc).



130 S.M. Rajtmajer et al. / On the complexity of Archimedean solids

Figure 3. The partial order via the Hasse diagram for Archimedean solids based on the four
considered complexity indices ξ , twc(q), tpc(q) and ttc(q).

There are also other approaches available to study the complexity of mol-
ecules and graphs [e.g., 20, 36]. For example, the number of spanning trees is a
good indicator of the structural complexity [36–39], but in the present case it is
impractical to use because this number is rather huge for Archimedean solids,
e.g., the number of spanning trees for the truncated icosahedron that neatly mod-
els buckminsterfullerene is 375, 291, 866, 372, 898, 816, 000 [37,40].
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Babić (Zagreb) for discussions.

Noted added in proof

While our paper was refereed and revised, another paper on the complex-
ity of Archimedean solids (and Platonic solids) appeared: A.T. Balaban and D.
Bonchev, Complexity, sphericity, and ordering of regular and semiregular polyhe-
dra, MATCH Commun. Math. Comput. Chem. 54 (2005) 137 (submitted Octo-
ber 20, 2004). The complexity criterion in this paper is the solid angle. However,
the authors considered only 11 Archimedean solids, the snub octahedron and the
snub icosadodecahedron were not included in their analysis.
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